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Deep neural networks

We consider a deep fully connected feedforward artifical neural network (ANN) with
L+ 1 layers :

o layer [ = 0: input layer;
o layers 0 < / < L: hidden layers;
o layer | = L: output layer.
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Deep neural networks

Layer 0 Layer [ — 1

Parameters:

o Neuron j in layer [ is provided by a bias bjl-;
@ Transition between neuron k in layer /| — 1 and neuron j in layer / is performed

applying a weight w,

The activation function of layer / is denoted o;.

Notations:
@ xq,...,Xxy are the inputs;

° zJ{ is the output of neuron j in layer | before the activation function;

Layer [

Layer L

° yJ’ = U,(zj) so that yr, ... ,y,\L,, are the outputs.
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Backpropagation

Given a cost function C(y,yL), our goal is to compute the parameters of the ANN
which minimize C:
w*, b* = arg miL\ Cly,yh)
w,

Therefore we need to compute
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Now, our problem is to determine 5J = 27 I We can use the backward recursion:

Backpropagation
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© The setting of physics-informed neural networks (PINNs)

A\

PONTS
chAUssEES

@ o pamis




Partial differential equations resolution

We are interested in solving the following problem:

Lu=f, VYxe
Bu=g, Vxel CoQ

where L is a differential operator, f a forcing function, B a boundary operator and g
the boundary data.
We design an appropriate cost function:

1. 2 1 ~ 2
= —||Ld — f| :f/||Lu—f|| dx
2 272 /g 2
with 4 the ansatz computed by the ANN.

After discretizing Q and T into sets of collocation points Q4 and Iy, we fall back to
solve the optimization problem:

w*, b* = argmin = E [[La(x;) — f(x,)||2
w,b 2 |Q |
X €Qq

under the constraints

Bi(x;) = g(xi), Vxi€Tlyq A@
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Integrating the boundary conditions into the cost function

A first way to solve the previous optimization problem is to integrate the boundary
constraints into a new term in the cost function, which rewrites:

Cost function of a PINN

1
= S 2 a6 — OB+ 5o 3 00) = )

X €Qy

This is the approach of Raissi et al* who first talked about " physics-informed neural
networks” .

Adding a new term to the cost function comes with instabilities and convergence
issues, especially in complex geometries or high-dimensional settings.
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4Raissi, Perdikaris, and Karniadakis, “Physics-informed neural networks: A deep learning framework for solving
forward and inverse problems involving nonlinear partial differential equations”.
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Integrating the boundary conditions into the ansatz

Following the steps of Berg and Nystrém, we define our ansatz i as

6(x) = G(x) + D)y (x)

where G is a smooth extension of the boundary data g and D is a smooth distance
function that gives the distance of I' from x € Q.

Given that Vx € ', D(x) = 0, the boundary conditions are automatically satisfied (we
consider Dirichlet conditions here).

Computation of G We require G to verify [|G(x) — g(x)|, <€, Vx€T.
We can compute G using an ANN with the cost function

ﬂr‘EjuGu,—gum@

x;i€ly

Ce =

Computation of D We require G to verify ||[D(x)|, <€, Vx €T and
D(x) =~ d(x) := melrrl Ix=yl,, ¥xeQ
y

We can compute D using an ANN with the cost function

1 1 5

= > 1D(i) — d(xi)ll2
2|Wd|+|rd|xf€%:urd I ‘

with wy C Q4. &

PONTS
We can ensure that |[y| < Q4] and |wg| + |Ty| < Q4| so that the computational Eow
cost of G and D is negligible compared to the resolution of the problem.
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Exactly imposing the boundary conditions

In the continuity of the previous approach, we may want to analytically calculate the
distance function D to increase the robustness of the method. We present a formalism
developed by Sukumar and Strivastava based on R-functions.

Our objective is to approximate the distance function d(x) = TEIP lIx = yll5-

We will use an approximate distance function (ADF) ¢ which verifies:

Properties of ADFs
o ¢(x)=0, VxeTl
o ¢(x) >0, VxeQ
o Vop(x)#0, Vxerl

10} ok
° 9 =1, 8—% =0, V2< k< mwith v the unitary normal vector to ' and m
v

v
the order of normalization

We will then search a solution of the form d(x) = G(x) + ¢(x)y’(x).
The calculation of ADFs relies on the use of R-functions F(wi,...,wq) whose sign
only depends on the signs of its arguments (which are real-valued functions).




R-functions can represent the geometry of a domain. An elementary R-function w
associated to a set A is non-negative inside A and non-positive outside A.
R-functions can be combined using boolean operations:

Negation (complementary) —w = —w
Disjunction (union) w; V wy = max(wi,w?)
Conjunction (intersection) wi A wy = min(wy, wy)

There operations correspond to complementary, union and intersection in a set theory
setting. They make possible the description of a wide variety of geometries.
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R-functions

Thanks to R-functions equivalence, one can construct an ADF ¢ for a boundary
composed of two elements whose ADFs are ¢ and ¢; respectively:

d(¢1,92) = m\/%
T+ o3

This formula can be easily generalized:

R-functions equivalence

¢(¢)17"'7¢n):—
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Examples

We consider the line segment [x1, x2].
X1 + X2
—

Construction of an approximate distance function for a line segment

The distance to the line going through x; and x, from a point x is

We denote L = [|x2 — x1]|, and x; =

f(X) _ (X - Xl)(yZ _yl) Z (y — YI)(Xz - Xl)

Next, we define the trimming function

dn::i<(§)2—nx—x4@>

Finally, we can write the approximate distance function

B(x) = | F(x)* + (

05 05 05
2 Gglﬂ g u‘
05 -05 -
4

2

tuﬁ+fuv—ﬂn>2

-0.5
-1 05 0 05 1




We consider the circular arc of center xc and radius R :
x(0) = xc + R(cos(0),sin(0)), VO € [61,0,].
We denote x; = xc + R(cos(61),sin(01)) and x2 = xc + R(cos(62), sin(62)).

Construction of an approximate distance function for a circular arc

The distance to the circle superposed on the circular arc from a point x is

R? — ||x — xcll3

Flx) = 2R

Next, we define the trimming function

t(x) = X002 =) = = n)le = x)
[Ix2 = x|l

Finally, we can write the approximate distance function

B(x) = 4| F(x)? + < t(x)° + F(x)* - f(X)>2

2




Examples

We consider the circle of center xc and radius R : ||x — xc[[, = R.

Approximate distance function for a circle

R? — || — xc|l3

90 =~

This formula can be extended to an ellipse whose closure is given by the R-function
w(x) >0:
w(x)

B(x) =

w2(x) + [IVw(x)13

A\

PONTS
chAUssEES



© Yuyang Miao and Haolin Li's method: graph embedding
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Limitations of euclidean space and int ction of GPINN

Standard PINNs operate in Euclidean space, which is not in accordance with physical
constraints since euclidean distance does not always correspond to the physical
distance.
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Figure 1: Distances of heat propagation (a) in the input space, (b) in a possible propagation path in physics and (¢) in the shortest
propagation path in physics.

GPINN Reformulation: Instead of working in an euclidean space (x, t), GPINN
introduce an additional dimension z:

UNN(X7 t,z) Q=R

The loss function in GPINN remains similar but incorporates topology-informed
learning:
L = wilppr + w2lpata + w3lic + walpc ﬁ
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Graph embedding and Fiedler Vector

Mathematical formulation of the graph structure and Fiedler vector extraction.

Graph representation

The computational domain is represented as a graph G = (V/, E) where:
@ V represents mesh nodes, E represents edges.

@ The adjacency matrix A encodes node connectivity.

@ The degree matrix D is diagonal with D;; = ZA,J

| \

Laplacian matrix and Fiedler vector

The Laplacian matrix is defined as:
L=D-A

The Fiedler vector v; is the second eigenvector of L, capturing the domain's topology:
Lvo = Xovo

The new input space is:
(x,t,2), z=w




Heat propagation: FEM vs PINN vs GPINN

Evaluating GPINN on a heat conduction problem in a 2D house.

Heat Conduction

The steady-state heat equation is given by:

Au(x) = f(x), x€Q
with boundary conditions:

u(x) = ug(x), x € 0Qp

Vu(x)-n=vg(x), x€ oy

L ¢ f=1
up =
——
br
Q
Uy A

Figure 6: Schematic of the heat propagation problem. The LA
domain of the 2D "house’ is defined as £2; there is a heat PONTS
source f in €2 ; the Dirichlet boundary conditoin is assigned Y-

on the boundary at the bottom of €2 that represents a *window’
whose temperature u; is the same as 'outside’.



Heat propagation: FEM vs PINN vs GPINN

o FEM provides the reference solution.

@ PINN fails to capture heat flow correctly due to domain discontinuities.

o GPINN aligns with physical constraints and improves accuracy.

u: FEM

u: PINN

u: GPINN

1500 1500 1500
1000 1000 1000
500 500 500
0 0 0

Figure 7: Reference(FEM) and Sample(NN) solutions of the steady temperature field.

PINN:max(RE(u))=0.34239

‘GPINN:max(RE(u))=0.00413:

Figure 8: Relative errors (RE) of the NN solutions to the reference FEM solution: RE(u) = |u — «*| / max (|u*|). The subfigure

on the left side is the relative error of PINN while the right one represents the GPINN.
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Crack modeling: FEM vs PINN vs GPINN

Evaluating GPINN on a single-side crack problem.

ty

L=2
u, =0
|2, =1

L

Uy

Figure 10: Schematic of the single-side crack tensile test. The
Dirichlet and Neumman boundary conditions are assigned as
indicated.

Linear Elasticity

The equilibrium equation for linear elasticity is:
V.o(x)=0, x€Q
with boundary conditions:
o(x)-n=t(x), x€y
u(x) = ug(x), x € 0Qp

where the stress-strain relation is:

o(x)=C:e(x), e(x)=Vu(x)



Crack Modeling: FEM vs PINN vs GPINN

@ FEM captures stress discontinuities accurately.
o PINN struggles with fracture representation.
@ GPINN incorporates topology, enabling better crack modeling.

u,: PINN u,: GPINN

u: FEM
: 005 0.04
-0.06
r oo -0.06
-0.08 20,08
i -0.09
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Figure 11: Reference (FEM) and Sample (NN) solutions of the steady temperature field

PINNmax(RE(,)=0.20063 GPINN:max(RE(u,)0 041662
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PN max(RE(s)20.55521 GPINN:max(RE(u,)=0.055783
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Figure 12: Relative errors () of the NN solutions to the reference FEM solution: RE(u) = [ — u*| /max (|u*|). The °
N, 16 pARIS

sublfigures on the left side are the relative errors of PINN while the right ones represent the GPIN
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