
Physics-informed neural networks in complex geometries
Drawn from the works of Berg and Nyström1, Sukumar and Strivastava2 & Miao

and Li3

Alexis Lucas Clément Mazzocchi

École nationale des ponts et chaussées
Institut Polytechnique de Paris

10 mars 2025

1Berg and Nyström, “A unified deep artificial neural network approach to partial differential equations in
complex geometries”.

2Sukumar and Srivastava, “Exact imposition of boundary conditions with distance functions in physics-informed
deep neural networks”.

3Miao and Li, GPINN: Physics-informed Neural Network with Graph Embedding.

Contents

1 A reminder on deep neural networks

2 The setting of physics-informed neural networks (PINNs)

3 Berg and Nyström’s method: approximately imposing the boundary conditions

4 Sukumar and Strivastava’s method: exactly imposing the boundary conditions

5 Yuyang Miao and Haolin Li’s method: graph embedding

Deep neural networks

We consider a deep fully connected feedforward artifical neural network (ANN) with
L+ 1 layers :

layer l = 0: input layer;

layers 0 < l < L: hidden layers;

layer l = L: output layer.

Deep neural networks

Parameters:

Neuron j in layer l is provided by a bias blj ;

Transition between neuron k in layer l − 1 and neuron j in layer l is performed
applying a weight w l

jk .

The activation function of layer l is denoted σl .
Notations:

x1, . . . , xN are the inputs;

z lj is the output of neuron j in layer l before the activation function;

y l
j = σl (z

l
j) so that yL

1 , . . . , y
L
M are the outputs.

z lj =
∑
k

w l
jkσl−1(z

l−1
k) + blj =

∑
k

w l
jky

l−1
k + blj

Backpropagation

Given a cost function C(y , yL), our goal is to compute the parameters of the ANN
which minimize C :

w∗, b∗ = argmin
w,b

C(y , yL)

Therefore we need to compute

∂C

∂w l
jk

=
∂C

∂z lj

∂z lj

∂w l
jk

=
∂C

∂z lj
y l−1
k

∂C

∂blj
=

∂C

∂z lj

∂z lj

∂blj
=

∂C

∂z lj

Now, our problem is to determine δlj :=
∂C

∂z lj
. We can use the backward recursion:

Backpropagation

δLj =
∂C

∂yL
j

∂yL
j

∂zLj
=

∂C

∂uLj
σ′
L(z

L
j)

δlj =
∑
k

∂C

∂z l+1
k

∂zk l + 1

∂z lj
=
∑
k

δl+1
k w l+1

kj σ′
l (z

l
j)

Contents

1 A reminder on deep neural networks

2 The setting of physics-informed neural networks (PINNs)

3 Berg and Nyström’s method: approximately imposing the boundary conditions

4 Sukumar and Strivastava’s method: exactly imposing the boundary conditions

5 Yuyang Miao and Haolin Li’s method: graph embedding

Partial differential equations resolution

We are interested in solving the following problem:{
Lu = f , ∀x ∈ Ω
Bu = g , ∀x ∈ Γ ⊂ ∂Ω

where L is a differential operator, f a forcing function, B a boundary operator and g
the boundary data.
We design an appropriate cost function:

C =
1

2
∥Lû − f ∥2L2 =

1

2

∫
Ω
∥Lû − f ∥22dx

with û the ansatz computed by the ANN.
After discretizing Ω and Γ into sets of collocation points Ωd and Γd , we fall back to
solve the optimization problem:

w∗, b∗ = argmin
w,b

1

2

1

|Ωd |
∑

xi∈Ωd

∥Lû(xi)− f (xi)∥22

under the constraints
Bû(xi) = g(xi), ∀xi ∈ Γd

Integrating the boundary conditions into the cost function

A first way to solve the previous optimization problem is to integrate the boundary
constraints into a new term in the cost function, which rewrites:

Cost function of a PINN

C =
1

2

1

|Ωd |
∑

xi∈Ωd

∥Lû(xi)− f (xi)∥22 +
1

2

1

|Γd |
∑
xi∈Γd

∥Bû(xi)− g(xi)∥22

This is the approach of Raissi et al4 who first talked about ”physics-informed neural
networks”.
Adding a new term to the cost function comes with instabilities and convergence
issues, especially in complex geometries or high-dimensional settings.

4Raissi, Perdikaris, and Karniadakis, “Physics-informed neural networks: A deep learning framework for solving
forward and inverse problems involving nonlinear partial differential equations”.

Contents

1 A reminder on deep neural networks

2 The setting of physics-informed neural networks (PINNs)

3 Berg and Nyström’s method: approximately imposing the boundary conditions

4 Sukumar and Strivastava’s method: exactly imposing the boundary conditions

5 Yuyang Miao and Haolin Li’s method: graph embedding

Integrating the boundary conditions into the ansatz

Following the steps of Berg and Nyström, we define our ansatz û as

û(x) = G(x) + D(x)yL(x)

where G is a smooth extension of the boundary data g and D is a smooth distance
function that gives the distance of Γ from x ∈ Ω.
Given that ∀x ∈ Γ,D(x) = 0, the boundary conditions are automatically satisfied (we
consider Dirichlet conditions here).

Computation of G We require G to verify ∥G(x)− g(x)∥2 < ϵ, ∀x ∈ Γ.
We can compute G using an ANN with the cost function

CG =
1

2

1

|Γd |
∑
xi∈Γd

∥G(xi)− g(xi)∥22

Computation of D We require G to verify ∥D(x)∥2 < ϵ, ∀x ∈ Γ and
D(x) ≈ d(x) := min

y∈Γ
∥x − y∥2, ∀x ∈ Ω.

We can compute D using an ANN with the cost function

CD =
1

2

1

|ωd |+ |Γd |
∑

xi∈ωd∪Γd

∥D(xi)− d(xi)∥22

with ωd ⊂ Ωd .

We can ensure that |Γd | ≪ |Ωd | and |ωd |+ |Γd | ≪ |Ωd | so that the computational
cost of G and D is negligible compared to the resolution of the problem.

Contents

1 A reminder on deep neural networks

2 The setting of physics-informed neural networks (PINNs)

3 Berg and Nyström’s method: approximately imposing the boundary conditions

4 Sukumar and Strivastava’s method: exactly imposing the boundary conditions

5 Yuyang Miao and Haolin Li’s method: graph embedding

Exactly imposing the boundary conditions

In the continuity of the previous approach, we may want to analytically calculate the
distance function D to increase the robustness of the method. We present a formalism
developed by Sukumar and Strivastava based on R-functions.
Our objective is to approximate the distance function d(x) = min

y∈Γ
∥x − y∥2.

We will use an approximate distance function (ADF) ϕ which verifies:

Properties of ADFs

ϕ(x) = 0, ∀x ∈ Γ

ϕ(x) > 0, ∀x ∈ Ω

∇ϕ(x) ̸= 0, ∀x ∈ Γ

∂ϕ

∂v
= 1,

∂kϕ

∂vk
= 0, ∀2 ≤ k ≤ m with v the unitary normal vector to Γ and m

the order of normalization

We will then search a solution of the form û(x) = G(x) + ϕ(x)yL(x).
The calculation of ADFs relies on the use of R-functions F (ω1, . . . , ωq) whose sign
only depends on the signs of its arguments (which are real-valued functions).

R-functions

R-functions can represent the geometry of a domain. An elementary R-function ω
associated to a set A is non-negative inside A and non-positive outside A.
R-functions can be combined using boolean operations:

Negation (complementary) ¬ω = −ω

Disjunction (union) ω1 ∨ ω2 = max(ω1, ω2)

Conjunction (intersection) ω1 ∧ ω2 = min(ω1, ω2)

There operations correspond to complementary, union and intersection in a set theory
setting. They make possible the description of a wide variety of geometries.

R-functions

Thanks to R-functions equivalence, one can construct an ADF ϕ for a boundary
composed of two elements whose ADFs are ϕ1 and ϕ2 respectively:

ϕ(ϕ1, ϕ2) =
ϕ1ϕ2

m
√

ϕm
1 + ϕm

2

This formula can be easily generalized:

R-functions equivalence

ϕ(ϕ1, . . . , ϕn) =
1

m
√

1
ϕm
1
+ . . .+ 1

ϕm
n

Examples

We consider the line segment [x1, x2].

We denote L = ∥x2 − x1∥2 and xc =
x1 + x2

2
.

Construction of an approximate distance function for a line segment

The distance to the line going through x1 and x2 from a point x is

f (x) =
(x − x1)(y2 − y1)− (y − y1)(x2 − x1)

L

Next, we define the trimming function

t(x) =
1

L

((
L

2

)2

− ∥x− xc∥22

)

Finally, we can write the approximate distance function

ϕ(x) =

√√√√f (x)2 +

(√
t(x)2 + f (x)4 − t(x)

2

)2

Examples

We consider the circular arc of center xc and radius R :
x(θ) = xc + R(cos(θ), sin(θ)), ∀θ ∈ [θ1, θ2].
We denote x1 = xc + R(cos(θ1), sin(θ1)) and x2 = xc + R(cos(θ2), sin(θ2)).

Construction of an approximate distance function for a circular arc

The distance to the circle superposed on the circular arc from a point x is

f (x) =
R2 − ∥x− xc∥22

2R

Next, we define the trimming function

t(x) =
(x − x1)(y2 − y1)− (y − y1)(x2 − x1)

∥x2 − x1∥2

Finally, we can write the approximate distance function

ϕ(x) =

√√√√f (x)2 +

(√
t(x)2 + f (x)4 − t(x)

2

)2

Examples

We consider the circle of center xc and radius R : ∥x− xc∥2 = R.

Approximate distance function for a circle

ϕ(x) =
R2 − ∥x− xc∥22

2R

This formula can be extended to an ellipse whose closure is given by the R-function
ω(x) ≥ 0 :

ϕ(x) =
ω(x)√

ω2(x) + ∥∇ω(x)∥22

Contents

1 A reminder on deep neural networks

2 The setting of physics-informed neural networks (PINNs)

3 Berg and Nyström’s method: approximately imposing the boundary conditions

4 Sukumar and Strivastava’s method: exactly imposing the boundary conditions

5 Yuyang Miao and Haolin Li’s method: graph embedding

Limitations of euclidean space and introduction of GPINN

Standard PINNs operate in Euclidean space, which is not in accordance with physical
constraints since euclidean distance does not always correspond to the physical
distance.

GPINN Reformulation: Instead of working in an euclidean space (x , t), GPINN
introduce an additional dimension z:

uNN(x , t, z) : Ω → R

The loss function in GPINN remains similar but incorporates topology-informed
learning:

L = ω1LPDE + ω2LData + ω3LIC + ω4LBC

Graph embedding and Fiedler Vector

Mathematical formulation of the graph structure and Fiedler vector extraction.

Graph representation

The computational domain is represented as a graph G = (V ,E) where:

V represents mesh nodes, E represents edges.

The adjacency matrix A encodes node connectivity.

The degree matrix D is diagonal with Dii =
∑
j

Aij .

Laplacian matrix and Fiedler vector

The Laplacian matrix is defined as:

L = D − A

The Fiedler vector v2 is the second eigenvector of L, capturing the domain’s topology:

Lv2 = λ2v2

The new input space is:
(x , t, z), z = v2

Heat propagation: FEM vs PINN vs GPINN

Evaluating GPINN on a heat conduction problem in a 2D house.

Heat Conduction

The steady-state heat equation is given by:

∆u(x) = f (x), x ∈ Ω

with boundary conditions:

u(x) = uB(x), x ∈ ∂ΩD

∇u(x) · n = vB(x), x ∈ ∂ΩN

Heat propagation: FEM vs PINN vs GPINN

FEM provides the reference solution.

PINN fails to capture heat flow correctly due to domain discontinuities.

GPINN aligns with physical constraints and improves accuracy.

Crack modeling: FEM vs PINN vs GPINN

Evaluating GPINN on a single-side crack problem.

Linear Elasticity

The equilibrium equation for linear elasticity is:

∇ · σ(x) = 0, x ∈ Ω

with boundary conditions:

σ(x) · n = t(x), x ∈ ∂ΩN

u(x) = uB(x), x ∈ ∂ΩD

where the stress-strain relation is:

σ(x) = C : ε(x), ε(x) = ∇u(x)

Crack Modeling: FEM vs PINN vs GPINN

FEM captures stress discontinuities accurately.

PINN struggles with fracture representation.

GPINN incorporates topology, enabling better crack modeling.

Questions?

Berg, Jens and Kaj Nyström. “A unified deep artificial neural network approach
to partial differential equations in complex geometries”. In: Neurocomputing 317
(2018), pp. 28–41. issn: 0925-2312. doi:
https://doi.org/10.1016/j.neucom.2018.06.056. url:
https://www.sciencedirect.com/science/article/pii/S092523121830794X.

Miao, Yuyang and Haolin Li. GPINN: Physics-informed Neural Network with
Graph Embedding. 2023. arXiv: 2306.09792 [cs.LG]. url:
https://arxiv.org/abs/2306.09792.

Raissi, M., P. Perdikaris, and G.E. Karniadakis. “Physics-informed neural
networks: A deep learning framework for solving forward and inverse problems
involving nonlinear partial differential equations”. In: Journal of Computational
Physics 378 (2019), pp. 686–707. issn: 0021-9991. doi:
https://doi.org/10.1016/j.jcp.2018.10.045. url:
https://www.sciencedirect.com/science/article/pii/S0021999118307125.

Sukumar, N. and Ankit Srivastava. “Exact imposition of boundary conditions
with distance functions in physics-informed deep neural networks”. In: Computer
Methods in Applied Mechanics and Engineering 389 (2022), p. 114333. issn:
0045-7825. doi: https://doi.org/10.1016/j.cma.2021.114333. url:
https://www.sciencedirect.com/science/article/pii/S0045782521006186.

Alexis Lucas, Clément Mazzocchi Physics-informed neural networks in complex geometries

https://doi.org/https://doi.org/10.1016/j.neucom.2018.06.056
https://www.sciencedirect.com/science/article/pii/S092523121830794X
https://arxiv.org/abs/2306.09792
https://arxiv.org/abs/2306.09792
https://doi.org/https://doi.org/10.1016/j.jcp.2018.10.045
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://doi.org/https://doi.org/10.1016/j.cma.2021.114333
https://www.sciencedirect.com/science/article/pii/S0045782521006186

	A reminder on deep neural networks
	The setting of physics-informed neural networks (PINNs)
	Berg and Nyström's method: approximately imposing the boundary conditions
	Sukumar and Strivastava's method: exactly imposing the boundary conditions
	Yuyang Miao and Haolin Li's method: graph embedding
	References

